Density Effect of the Compacted Copper-Tungsten Shaped Charge Powder Liners on its Penetration Performance

Image

Abstract

Shaped charge jet has been used extensively due to its considerable large penetration depth into different target materials. Various liner materials have been used to manufacture shaped charge liners in research so far [1]. Zirconium, copper, silver, steel, titanium depleted uranium liners have been studied according to their jet break-up time [2-4] and effective jet length [2]. Glass liner has been tested and exhibited a larger breakup time in comparison with the traditional copper liner. Compacted powder pressing material as a shaped charge liner has been patented in 2001 by Reese et al. [5] as a shaped charge oil well perforator liner for oil and well field completion. Stinson et al. have patented the methodology for producing single phase tungsten or molybdenum liners for warhead application using hot isostatic pressing technique, after which the final liner dimensions are obtained by machining [6]. Walters et al. have tested un-sintered copper tungsten liners against steel targets at short stand-off distances using OMNI shaped charge and described the bulk spreading jet particles using flash x-ray radiograph [7]. Halliburton energy service, USA has also patented some different powder liners including tungsten, copper, lead, tantalum and molybdenum with their different loading densities to test them in the oil industry. Their invention has been implemented in the oil industry as oil well perforator to complete the well [8]. Hirsch and Mayseless discussed and analysed the characteristics of the shaped charge powder jet and its penetration capability into soft and hard targets [9]. Zhang et al. measured the jet velocity of coppertungsten powder jet and effect of both water and air on the attenuation of its jet tip velocity [10]. Glenn used composite liner composed of copper, tungsten, graphite and tin powders for oil well perforating concrete targets [11]. All the discussed liner powder mixtures have different densities based on their initial powder composition design, which in turn yield different collapse velocities and therefore result in different jet tip velocities due to explosive metal Gurney configurations and unsteady state PER theory [12]. The density distribution was considered in the jets formed from powdered metal liners and its effect on the penetration has also been discussed analytically [13-15] and experimentally [16].